Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng and Xiaopeng Zhang
     Illumination estimation is an essential problem in computer vision, graphics and augmented reality. In this paper, we propose a learning based method to recover low-frequency scene illumination represented as spherical harmonic (SH) functions by pairwise photos from rear and front cameras on mobile devices. An end-to-end deep convolutional neural network (CNN) structure is designed to process images on symmetric views and predict SH coefficients. We introduce a novel Render Loss to improve the rendering quality of the predicted illumination. A high quality high dynamic range (HDR) panoramic image dataset was developed for training and evaluation. Experiments show that our model produces visually and quantitatively superior results compared to the state-of-the-arts. Moreover, our method is practical for mobile-based applications.
More than 1000 HDR panoramas(6912x3456). For downloading this dataset, please contact to chengdc@ios.ac.cn